بررسی اجزای سیستمهای انتقال در فیبر نوری

بررسی اجزای سیستمهای انتقال در فیبر نوری

بررسی-اجزای-سیستمهای-انتقال-در-فیبر-نوری

بررسی اجزای سیستمهای انتقال در فیبر نوری 
تعداد صفحات : 61 با فرمت ورد و قابل ویرایش
 
فهرست منابع :

منابع  (فرستنده های نوری)

انواع منابع نوری

مدولاسیون ومالتی پلکسینگ

انواع مدولاتورها 9

فیبرهای نوری

انواع کابل فیبرهای نوری

فیبرنوری پلاستیکی (POF)

تقویت کننده های نوری

آشکارسازها (گیرنده های نوری)

هدایت کننده های نوری

فوتو دایودها

P-I-N دیودها

اندازه گیری بازده در P-I-N دیودها

فوتودایودهای Schottky-Barrier

فوتودایودهای آوالانژ (APD)

ویژگی های APD

آشکار سازهای Hetero-Interface

آشکار سازهای Travelling-Wave

آشکار سازهای  Resonant-Cavity

Phototransistors

پهناي باند گيرنده

BER

SNR

منابع

دانلود فایل

دانلود پاورپوینت ویژگیهای اصلی MATLAB

دانلود پاورپوینت ویژگیهای اصلی MATLAB

دانلود-پاورپوینت-ویژگیهای-اصلی-matlabویژگیهای اصلی MATLAB
فایل دانلودی حاوی یک فایل پاورپوینتی در 35 اسلاید به صورت متنی همراه باعکس و…. میباشد.
از جمله مطالب فایل دانلودی:
آشنایی با محیط متلب
عملیات ریاضی ساده
عملگرهای ریاضی متلب
فضای کاری متلب (Workspace)
فرمت نمایش اعداد
انواع متغیرها
نامگذاری متغیرها
متغیرهای ویژه
علائم نقطه گذاری و جملات توضیحی
اعداد مختلط
بعضی از توابع ریاضی در متلب
راهنمای متلب
فایلهای متنی یا m-فایلها
مدیریت فایل در متلب

دانلود فایل

کتاب فارسی پردازشگرهای سیگنال دیجیتال TMS320F2812

کتاب فارسی پردازشگرهای سیگنال دیجیتال TMS320F2812

کتاب-فارسی-پردازشگرهای-سیگنال-دیجیتال-tms320f2812

کتاب فارسی پردازشگرهای سیگنال دیجیتال TMS320F2812
تعداد صفحات : 326 


پردازشگرهای سیگنال های دیجیتال با بالاترین سطح تجمع روی یک تراشه و قابلیت- های محاسباتی قدرتمند و قیمت مناسب، در کاربردهای کنترلری نهفته ابزارهای قوی و کارآمد می باشند و تقریبا در همه محصولات مدرن امروزی مورد استفاده قرار می گیرند.


 این پردازنده ها، مشابه میکروکنترلرها هستند با این تفاوت که هسته های آنان دارای قدرت محاسباتی، منطقی و شیفت بسیار قوی تر بوده و واحدهای سخت افزاری اضافی داخلی از قبیل جمع حاصل ضرب ها جهت دستیابی به تسریع بیشتر در محاسبات ریاضی را دارا می باشند. در این کتاب ضمن بررسی دقیق معماری داخلی پردازشگرهای سیگنال های دیجیتال سری 2000، مراحل طراحی و پیاده سازی چندین پروژه عملی توسط این پردازنده های DSP بیان شده است.
دانلود فایل

دانلود پاورپوینت فناوری نانو

دانلود پاورپوینت فناوری نانو

دانلود-پاورپوینت-فناوری-نانو

دانلود پاورپوینت فناوری نانو

تعداد اسلاید : 73

تعریف نانوتکنولوژی و آشنایی با آن

نانوتکنولوژی، توانمندی تولید مواد، ابزارها و سیستمهای جدید با در دست گرفتن کنترل در سطوح ملکولی و اتمی و استفاده از خواص است که در آن سطوح ظاهر می­شود. از همین تعریف ساده برمی­آید که نانوتکنولوژی یک رشته جدید نیست، بلکه رویکردی جدید در تمام رشته هاست. برای نانوتکنولوژی کاربردهایی را در حوزه های مختلف از غذا، دارو، تشخیص پزشکی و بیوتکنولوژی تا الکترونیک، کامپیوتر، ارتباطات، حمل­و­نقل، انرژی، محیط زیست، مواد، هوافضا و امنیت ملی برشمرده اند.کاربردهای وسیع این عرصه به همراه پیامدهای اجتماعی، سیاسی و حقوقی آن، این فن ­ آوری را به­عنوان یک زمینه فرا رشته­ای و فرابخش مطرح نموده است.

 

هر چند آزمایش­ها و تحقیقات پیرامون نانوتکتولوژی از ابتدای دهه 80 قرن بیستم بطور جدی پیگیری شد، اما اثرات تحول آفرین، معجزه آسا و باورنکردنی نانوتکنولوژی در روند تحقیق و توسعه باعث گردید که نظر تمامی کشورهای بزرگ به این موضوع جلب گردد و فناوری نانو را به عنوان یکی از مهمترین اولویتهای تحقیقاتی خویش طی دهه اول قرن بیست و یکم محسوب نمایند .

 

استفاده از این فن­آوری در کلیه علوم پزشکی، پتروشیمی، علوم مواد، صنایع دفاعی، الکترونیک، کامپوترهای کوانتومی و غیره باعث شده که تحقیقات در زمینه نانو به­عنوان یک چالش اصلی علمی و صنعتی پیش روی جهانیان باشد. لذا محققین، اساتید و صنعتگران ایرانی نیز باید در یک بسیج همگانی، جایگاه، موقعیت و وضعیت خویش را در خصوص این موضوع مشخص نمایند و با یک برنامه­ریزی علمی دقیق و کارشناسانه به حضوری فعال و حتی رقابتی سالم در این جایگاه، عرض­اندام و ابراز وجود نمایند و برای چنین کاری طراحی یک برنامه منسجم، فراگیر و همه جانبه اجتناب­ناپذیر است.

 

 نانوتکنولوژی و کاربردهای آن

علوم و فناوری نانو، عنصر ی اساسی در درک بهتر طبیعت در دهه‌های آتی خواهد بود. از جمله موارد مهم در آ ی نده، همکاریهای تحقیقاتی میان‌رشته‌ا‌ی، آموزش خاص و انتقال ایده‌ها و افراد به صنعت خواهد بود. بخشی از تأثیرات و کاربردهای نانوتکنولوژی به­شرح زیر می‌باشد:

 

1 – تولید ، مواد و محصولات صنعتی :

نانوتکنولوژی تغییر بنیانی مسیری است که در آینده، موجب ساخت مواد و ابزارها خواهد شد. امکان سنتز بلوک‌های ساختمانی نانو با اندازه و ترکیب به دقّت کنترل‌شده و سپس چیدن آنها در ساختارهای بزرگتر، که دارای خواص و کارکرد منحصربه‌فرد باشند، انقلابی در مواد و فرآیندهای تولید آنها، ایجاد می‌کند. محقّقین قادر به ایجاد ساختارهایی از مواد خواهند شد که در طبیعت نبوده و شیمی مرسوم نیز قادر به ایجادشان نبوده‌است. برخی از مزایای نانوساختارها عبارتست از: مواد سبک‌تر، قوی‌تر و قابل برنامه‌ریزی ؛ کاهش هزینه عمر کاری از طریق کاهش دفعات نقص فنّی ؛ ابزارهایی نوین بر پایه اصول و معماری جدید ؛ بکارگیری کارخانجات مولکولی یا خوشه‌ا‌ی که مزیّت مونتاژ مواد در سطح نانو را دارند.

2- پزشکی و بدن انسان:

رفتار مولکولی در مقیاس نانومتر، سیستمهای زنده را اداره می‌کند. یعنی مقیاسی که شیمی، فیزیک، زیست‌شناسی و شبیه‌سازی کامپیوتری، همگی به آن سمت درحال گرایش هستند.

  • فراتر از سهل‌شدن استفاده بهینه از دارو، نانوتکنولوژی می‌تواند فرمولاسیون و مسیرهایی برای رهایش دارو ( Drug Delivery ) تهیه کند، که به‌نحو حیرت‌انگیزی توان درمانی داروها را افزایش می‌دهد.
  • مواد زیست‌سازگار با کارآیی بالا، از توانایی بشر در کنترل نانوساختارها حاصل خواهدشد. نانومواد سنتزی معدنی و آلی را مثل اجزای فعّال، می‌توان برای اعمال نقش تشخیصی (مثل ذرات کوانتومی که برای مرئی‌سازی بکار می‌رود) درون سلولها وارد نمود.
  • افزایش توان محاسباتی بوسیله نانوتکنولوژی، ترسیم وضعیت شبکه‌های ماکرومولکولی را در محیط‌های واقعی ممکن می‌سازد. اینگونه شبیه‌سازی‌ها برای بهبود قطعات کاشته‌شده زیست‌سازگار در بدن و جهت فرآیند کشف دارو، الزامی خواهدبود.

 

3- دوام‌پذیری منابع: کشاورزی، آب، انرژی، مواد و محیط زیست پاک:

نانوتکنولوژی چنان چ ه ذکر شد، منجر به تغییرات ی شگرف در استفاده از منابع طبیعی، انرژی و آب خواهد شد و پس ا ب و آلودگی را کاهش خواهدداد. همچنین فنّاوری‌های جدید، امکان بازیافت و استفاده مجدد از مواد، انرژی و آب را فراهم خواه ن د کرد. در زمینه محیط زیست ، علوم و مهندسی نانو، می‌تواند تأثیر قابل ملاحظه‌ا‌ی ، در درک مولکولی فرآیندهای مقیاس نانو که در طبیعت رخ می‌دهد ؛ در ایجاد و درمان مسائل زیست‌محیطی از طریق کنترل انتشار آلاینده‌ها ؛ در توسعه فنّاوری‌های “سبز” جدید که محصولات جانبی ناخواسته کمتری دارند و ی ا در جریانات و مناطق حاوی فاضلاب، داشته‌باشد. لازم به ذکراست، نانوتکنولوژی توان حذف آلودگی‌های کوچک از منابع آبی (کمتر از 200 نانومتر) و هوا (زیر 20 نانومتر) و اندازه‌گیری و تخفیف مداوم آلودگی در مناطق بزرگتر را دارد.

در زمینه انرژی ، نانوتکنولوژی می‌تواند به‌طور قابل ملاحظه‌ا‌ی کارآیی، ذخیره‌سازی و تولید انرژی را تحت تأثیر قرار د ا د ه مصرف انرژی را پایین بیاورد . به عنوان مثال، شرکتهای مواد شیمیایی، مواد پلیمری تقویت‌شده با نانوذرات را ساخته‌اند که می‌تواند جایگزین اجزای فلزی بدنه اتومبیلها شود. استفاده گسترد ه ازاین نانوکامپوزیت‌ها می‌تواند سالیانه 5/1 میلیارد لیتر صرفه‌جویی مصرف بنزین به ‌همراه داشته‌باشد .

یا انتظار می‌رود تغییرات عمده‌ا‌ی در فنّاوری روشنایی در 10 سال آینده رخ دهد. می‌توان نیمه‌هادی‌های مورد استفاده در دیودهای نورانی ( LED ها) را به مقدار زیاد در ابعاد نانو تولید کرد. در ا مریکا ، تقریبا” 20% کل برق تولیدی، صرف روشنایی (چه لامپهای التهابی معمولی و چه فلوئورسنت) می‌شود. مطابق پیش‌بینی‌ها در 10 تا 15 سال آینده ، پیشرفتهایی از این دست می‌تواند مصرف جهانی را بیش از 10% کاهش دهد که 100 میلیارد دلار در سال صرفه‌جویی و 200 میلیون تن کاهش انتشار کربن را به‌همراه خواهدداشت .

 

4 – هوا ­ و ­ فضا :

محدودیت‌های شدید سوخت برای حمل بار به مدار زمین و ماورای آن، و علاقه به فرستادن فضاپیما برای مأموریتهای طولانی به مناطق دور از خورشید ، کاهش مداوم اندازه، وزن و توان مصرفی را اجتناب‌ناپذیر می‌سازد. مواد و ابزارآلات نانوساختاری، امید حل این مشکل را بوجود آورده‌است.


دانلود فایل

دانلود پاورپوینت آنتن هاي هوشمند

دانلود پاورپوینت آنتن هاي هوشمند

دانلود-پاورپوینت-آنتن-هاي-هوشمنداین پاورپوینت با موضوع آنتن های هوشند با 65 اسلاید با عناوین

 
مقدمه

نقش آنتن در يك سيستم مخابراتي
كاربرد تكنولوژي آنتن هوشمند
آنتن‌هاي هوشمند از گذشته‌هاي دور
طبقه‌بندي آنتن هوشمند
طبقه‌بندي آنتن هوشمند _بر اساس کاربرد
فوايد استفاده از آنتن‌هاي هوشمند
هزينه‌ها و معايب استفاده از آنتن‌هاي هوشمند
کلیات سیستم ماهواره ای
منابع

 
مقدمه


امروزه كوشش هاي پيگيرانه اي در جهت استفاده هرچه بيشتر از امواج به جاي سيم ها در دنياي كامپيوتر در حال انجام است كه برخي از آنها به نتيجه مطلوب رسيده ولي برخي هنوز در مراحل آزمايشي و تحقيقاتي قرار دارند. ارتباطات ماهواره اي از طريق آنتن هاي عادي دريافت و ارسال یكي از نمونه هاي برجسته و بسيار كارا در اين زمينه است كه استفاده موفقيت آميز از آن اكنون معمول گشته است.

با اين حال تكنيك هاي پيشرفته تري نيز در راه هستند كه از آن جمله است به كارگيري آنتن هاي هوشمند در گستره ارتباطات مخابراتي و به خصوص انتقال داده ها. اما آنتن هوشمند چيست و چه كاربردي دارد و گذشته از آن، آيا به راستي «آنتن» مي تواند «هوشمند»باشد؟
نقش آنتن در يك سيستم مخابراتي



آنتن در سيستم هاي مخابراتي بيشتر از تمام بخش هاي ديگر از معرض ديد دور مانده است. آنتن دريچه اي است كه انرژي فركانسي راديويي را از فرستنده به دنياي خارج و از دنياي خارج به گيرنده كوپل مي كند. روشي كه طي آن انرژي به فضاي اطراف توزيع و از آن دريافت مي شود اثري بسيار جدي روي استفاده موثر از طيف، برقراري شبكه هاي جديد و كيفيت سرويس ايجاد شده از اين شبكه ها دارد.


به طور كلي دو نوع آنتن داريم:

آنتن همه جهتي

آنتن يك جهتي

سيستم آنتن هوشمند

در حقيقت، آنتن ها هوشمند نيستند بلكه سيستم آنتن ها هوشمند هستند. عموماً هنگامي كه اين سيستم ها در كنار يك ايستگاه پايه قرار مي گيرند، آنتن هوشمند از يك ارائه آنتني با قابليت پردازش سيگنال ديجيتال براي ارسال و دريافت سيگنال به صورت حساس و تطبيقي استفاده مي كند. به عبارت ديگر، چنين سيستمي مي تواند به صورت اتوماتيك جهت الگو تشعشعي را در پاسخ به محيط سيگنال تغيير دهد. اين مسئله به طرز شگفت انگيزي مشخصه سيستم بي سيم را بهبود مي بخشد

اهداف و مزاياي يك سيستم آنتن هوشمند

دو هدف سيستم آنتن هوشمند، افزايش كيفيت سيگنال سيستم هاي راديويي و افزايش ظرفيت از طريق افزايش استفاده مجدد از فركانس صورت مي گيرد. گين سيگنال، ورودي چند آنتن با هم تركيب مي شود تا توان موجود براي برقراري سطح پوشش مورد نظر بهينه شود.
متمركز كردن انرژي فرستاده شده به سمت سلول، محدوده سرويس دهي و پوشش ايستگاه پايه را افزايش مي دهد. مصرف توان كمتر عمر باتري را بيشتر كرده و تلفن همراه را كوچك تر و سبك تر مي كنند. مقاومت در برابر تداخل و نسبت سيگنال به تداخل را افزايش مي دهند. هزينه كمتر براي تقويت كننده، مصرف توان و قابليت اطمينان بيشتري را ايجاد خواهد كرد.

كاربرد تكنولوژي آنتن هوشمند

تكنولوژي آنتن هوشمند مي تواند به نحو موثري عملكرد سيستم بي سيم را بهبود بخشد و از نظر اقتصادي نيز بسيار به صرفه است. اين تكنولوژي كاربران كامپيوترها، سيستم هاي سلولي و شبكه هاي حلقه محلي بي سيم را قادر مي سازد كه كيفيت سيگنال، ظرفيت سيستم و پوشش را بسيار بالا ببرند. كاربران معمولاً در زمان هاي مختلف، به درصدهاي مختلفي از كيفيت، ظرفيت و پوشش نياز دارند. در اصل سيستم هايي كه از نظر ساختار به راحتي قابل تغيير باشند، در دراز مدت بهترين و به صرفه ترين راه حل ها محسوب مي شوند.

علت هوشمندي اين نوع آنتن ها



در مكان هايي كه تعداد كاربر، تداخل و پيچيدگي انتشار زياد مي شود، به سيستم هاي آنتن هوشمند نياز خواهد بود. هوشمندي سيستم ها به امكانات آنها براي پردازش سيگنال ديجيتال برمي گردد. مانند اكثر پيشرفت هاي مدرني كه در صنايع الكترونيك امروزي صورت گرفته است، فرمت ديجيتال از جهت دقت و انعطاف پذيري كاركرد چند مزيت دارد.



سيستم هاي آنتن هوشمند سيگنال هاي آنالوگ (نظير صوت) را گرفته و به سيگنال هاي ديجيتال تبديل و براي ارسال مدوله مي كنند و در سمت ديگر دوباره آن را به سيگنال آنالوگ تبديل مي نمايند

در سيستم هاي آنتن هوشمند اين قابليت پردازش سيگنال با تكنيك هاي پيشرفته (الگوريتم ها) تركيب شده و براي اداره وضعيت هاي پيچيده استفاده مي شوند.
فوايد استفاده از آنتن‌هاي هوشمند

افزايش ظرفيت:

در نواحي پرجمعيت، تداخل عامل مهم محدودكنندة ظرفيت است. آنتن‌هاي هوشمند به طور همزمان با افزايش سطح سيگنال مفيد دريافتي و كاهش اثر تداخل، SIR را افزايش مي‌دهند.

درسيستم‌هاي ‏CDMA ، تداخل عامل مهمي در محدودكردن ظرفيت محسوب مي‌شود. علت اين امر، عدم دقت در تعامد كدها است. بدين‌ترتيب پيش‌بيني مي‌شود كه بهبود ظرفيت در سيستم CDMA ‌ خيلي بيشتر از ساير روش‌هاي دستيابي باشد. نتايج تجربي براي سيستم CDMA‌ افزايش ظرفيتي از مرتبة 5 و براي سيستم TDMA‌ افزايش ظرفيتي از مرتبة 3 را نشان مي‌دهند.

دانلود فایل

دانلود پاورپوینت ایمنی برق

دانلود پاورپوینت ایمنی برق

دانلود-پاورپوینت-ایمنی-برق

دانلود پاورپوینت با موضوع ایمنی برق در قالب پاورپوینت و قابل ویرایش در 35 اسلاید

 
 در صنعت برق اگر ايمني رعايت نشود ، خطر برق گرفتگي حتمي است. بنابراين قبل از دست زدن به سيم يا ادوات برقي جهت تعمير و يا هر گونه بازرسي بايستي حتماً جريان برق در مدار قطع بوده و مطمئن باشيد كه جريان برق وجود ندارد و آزمايش وجود يا عدم وجود جريان برق توسط فازمتر صورت ميگيرد.

در موارد با ولتاژ بالا، حتماً بدن لازم نيست مستقيم با سيم يا كابل برق تماس داشته باشد بلكه ممكن است در فاصله 20 متري هم جريان برق از هوا عبور كند و به بدن فرد منتقل شود و باعث برق گرفتگي شود. در اين موارد هر چقدر ولتاژ برق و رطوبت هوا بالا باشد ميزان انتقال و آسيبي كه به بدن وارد مي شود بيشتر است.

 موارد ولتاژ پائين بيشتر در خانه اتفاق مي افتد. مثلاً فرد از سيم لخت و يا وسايل برقي مخصوصاً آن دسته از وسايل كه در آنها آب ريخته مي شود آسيب مي بيند.ممكن است از طريق كليد برق برق گرفتگي ايجاد شود.
در برق گرفتگي با ولتاژ پائين بدن فرد دچار لرزش مي شود حال آنكه در موارد با ولتاژ بالا بدليل گرفتگي عضلات، منجر به اتصال دائم با آن وسيله خواهد شد.


با ورود جريان برق به بدن در اثر انقباضهاي الکتريکي سفت ( کزازي شکل ) عضلات تنفسي يا آسيب مراکز تنفسي در مغز ( در بصل النخاع ) ايست تنفسي عارض مي شود و پس از مدتي قلب نيز از حرکت مي ايستد . البته اگر جريان برق از خود قلب نيز عبور کرده باشد با ايجاد انقباضات کرمي شکل و غيرمؤثرو اسپاسموديک در بطن ( فيبريلاسيون بطني ) ايست قلبي اوليه خواهيم داشت .

دانلود فایل

دانلود پاورپوینت در مورد برقگیر

دانلود پاورپوینت در مورد برقگیر

دانلود-پاورپوینت-در-مورد-برقگیر

دانلود پاورپوینت در مورد برقگیر

تعداد اسلاید : 63

برقگيرچيست؟

برقگير وسيله اي است كه

به منظور حفاظت در مقابل

اضافه ولتاژهاي گذرا و

تخليه اضافه ولتاژهاي موجي

ظاهر شده در هادي هاي

خطوط و پست هاي فشار قوي

بكار مي رود.

تشابه بین آذرخش و جرقه الکتریکی در همان اوایل قرن هجدهم مورد توجه قرار گرفت. تصور می‌شد که ابری طوفانی بار الکتریکی زیادی حمل می‌کنند، و آذرخش جرقه غول آسایی است که فقط از نظر اندازه با جرقه بین الکترودهای ماشین ویمچورست متفاوت است. این مطلب را مثلاً لومونوسوف (M. V. Lomonosovفیزیکدان و شیمیدان روسی که الکتریسته جو را همراه با مسائل علمی دیگر مطالعه کرد، خاطر نشان نمود. این مطلب با آزمایشهایی که لومونوسوف در سالهای 1752 و 1753 و فرانکلین (B. Franklinپژوهشگر آمریکایی بطور مستقل انجام دادند، تأیید شده است
ماشین تندر لومونوسوف
لومونوسوف یک ماشین تندر ساخت. خازنی که در آزمایشگاه او نصب شده بود و با سیمی که انتهایش از اتاق خارج و بر تیرک بلند بالا برده شده بود، با الکتریسته جو باردار می شد. در مدت طوفانهای تندری ، با لمس کردن خازن می شد جرقه را از آن خارج کرد

برقگير از وسايل ايمني مي‏باشد كه براي هدايت موجهاي ولتاژ ضربه‏اي به زمين و جلوگيري از ورود آنها به ايستگاههاي انتقال و توزيع نيرو بكار مي‏رود و معمولاً در انتهاي خط انتقال و در ورودي ترانسها نصب مي‏شودولتاژ شكست الكتريكي يك برقگير بايستي كمتر از ولتاژ شكست الكتريكي ايزولاسيون لايه تجهيزات نصب شده در پست باشد.
دانلود فایل

دانلود تحقیق ژنراتورها و ذخیره سازی نیرو

دانلود تحقیق ژنراتورها و ذخیره سازی نیرو

دانلود-تحقیق-ژنراتورها-و-ذخیره-سازی-نیرو

این تحقیق در مورد تشریح مولدها و ژنراتورها در ذخیره سازی نیرو در 60 صفحه  در قالب ورد و قابل ویرایش می باشد.

 

در تولید انرژی الکتریکی مولد الکتریکی یا ژنراتور برقی (به انگلیسی: Electric Generator) به ماشینی گفته می‌شود که از طریق القای الکترومغناطیسیانرژی مکانیکی را به انرژی الکتریکی تبدیل می‌کند. تبدیل بالعکس انرژی الکتریکی به انرژی مکانیکی به وسیله موتور الکتریکی صورت می‌گیرد. موتورها و مولدهای الکتریکی از جهات مختلفی دارای شباهت‌های زیادی با یکدیگر هستند. منبع تامین کننده انرژی مکانیکی ممکن است توربین بخار، توربین آبی،توربین بادی و یا یک موتور احتراق داخلی باشد.

پیشرفت

قبل از اینکه fرابطه بین الکتریسیته و مغناطیس کشف شود مولدهای الکترواستاتیکی کشف شدند که از اصول الکترواستاتیک برای تولید انرژی الکتریکی استفاده می‌کردند. این مولدها توان را در ولتاژبسیار بالا و جریان الکتریکی اندک تولید می‌کردند. این ماشین‌ها از یکی از این دو مکانیزم برای تولید انرژی الکتریکی استفاده می‌کردند:

  • ۱- القای الکترواستاتیک
  • ۲- تولید برق بر اثر اصطکاک (تریبوالکتریسیته) به دلیل بهره‌وری پایین این مولدها و نیاز آنها برای استفاده از عایق کاری پر هزینه به علت ولتاژ بالا این مولدها هرگز در کاربردهای عملی و برای تولید میزان قابل توجهی از انرژی الکتریکی مورد استفاده قرار نگرفتند. ماشین ویمشاست(Wimshurst) و مولدهای ون دی گراف (Van de Graafff) مثال‌هایی از این مولدها هستند که هنوز مورد استفاده  قرار می‌گیرند.

صفحه فارادی

در سال‌های ۱۸۳۱-۱۸۳۲ مایکل فارادی اصول عملکرد مولدهای الکترومغناطیسی را کشف کرد. این اصل بعدها قانون فارادی نام گرفت که بر این نکته دلالت می‌کند که در دو سر هادی که به طور عمودی نسبت به یک میدان مغناطیسی حرکت کند پتانسیل الکتریکی ایجاد می‌شود. او همچنین اولین مولد  الکترومغناطیس را نیز ساخت که به آن صفحه فارادی گفته شد. این مولد یک مولد هم قطب بود که از یک صفحه مسی که بین دو آهن‌ربای نعل اسبی می‌چرخید تشکیل شده بود. این مولد قادر به ساخت میزان اندکی ولتاژ جریان مستقیم با یک جریان بالا بود.

البته این طراحی از جهات مختلفی کم بازده بود چرا که ولتاژ تنها در قسمت‌هایی از صفحه به وجود می‌آمد که زیر قطب‌ها قرار داشتند و جریان تولیدی به سرعت در دیگر قسمت‌های صفحه پخش می‌شد و این جریان جاری شده در صفحه موجب هدر رفتن انرژی به صورت گرما می‌شد. مولدهای هم قطب بعدی این مشکل را با استفاده از آهن رباهایی که تمام محیط صفحه را پوشش می‌دادند حل کردند به طوری که میدان در طول تمام صفحه به طور یک‌نواخت وجود داشته باشد.

دینام

دینام اولین مولد الکتریکی بود که این قابلیت را داشت تا برق مورد نیاز صنایع را تامین کند. دینام از اصول الکترومغناطیس برای تبدیل انرژی مکانیکی به انرژی الکتریکی استفاده می‌کند و با استفاده از کموتاتور جریان مستقیم را در خروجی خود تولید می‌کند. در طول مجموعه‌ای از اکتشافات تصادفی دینام به یک منبع برای اختراع ماشین‌هایی چون موتور الکتریکی جریان مستقیم، تناوب‌گر AC، موتور سنکرون و مبدل گردان تبدیل شد.

یک دینام از یک قسمت ثابت که میدان مغناطیسی دائمی را تولید می‌کند و مجموعه‌ای از سیم‌پیچ‌های متحرک که در داخل میدان می‌گردند تشکیل شده‌است. در دینام‌های کوچک میدان ثابت ممکن است به وسیله چند آهنربای دائمی فراهم شود. در دینام‌های بزرگ این میدان به وسیله یک یا چند آهنربای الکتریکی ایجاد می‌شود.

امروزه به ندرت می‌توان مولدهای دینامی بزرگی را دید که برای تولید انرژی الکتریکی مورد استفاده قرار گیرند و این به دلیل عدم استفاده از جریان مستقیم است. امروزه استفاده از جریان متناوب به علت بهره‌وری بالا در حین تولید، توزیع و انتقال به شدت گسترش یافته و برای تبدیل از جریان متناوب به جریان مستقیم نیز معمولاً از مدارات الکترونیکی و الکترونیک قدرت استفاده می‌شود. اما پیش از  کشف اصول جریان متناوب تولید انرژی الکتریکی تقریباً فقط با استفاده از تعداد زیادی مولد دینامی ممکن بود. امروزه مولدهای دینامی تنها به عنوان ابزاری نمادین برای نشان دادن تاریخ تولید برق مورد استفاده قرار می‌گیرند.

مولدهای MHD

یک مولد MHD یا مگنیتوهیدرودینامیکی (magnetohydrodynamic) نوعی از مولد است که برق را مستقیم از گازهای داغی که در یک میدان مغناطیسی در حرکت هستند و بدون استفاده از تجهیزات الکترومغناطیسی می‌گیرد. امکان استفاده از گازهای خروجی از این مولد برای گرم کردن یک بویلر در یک چرخه گرمایی، استفاده از این مولدها را منطقی‌تر کرده‌است. اولین نوع از این دسته مولدها در سال ۱۹۶۵ طراحی شد و اوج استفاده از این مولدها به یک نیروگاه نمایشی ۲۵۵ مگاواتی در ایالات متحده باز می‌گردد. با وجود امکان استفاده از گرمای گازهای خروجی مورد استفاده در این مولدها بهره‌وری آنها از توربین‌های سیکل ترکیبی پایین‌تر است و به همین دلیل استفاده از این مولدها بسیار محدود است.

تصورات غلط

بر خلاف تصور عموم یک مولد به هیچ عنوان بار الکتریکی را تولید نمی‌کند بلکه میزان بار الکتریکی همواره در هادی ثابت است. عملکرد یک مولد با عملکرد پمپ آب قابل مقایسه‌است که تنها جریان آب را  ایجاد می‌کند و به خودی خود آبی تولید نمی‌کند.

تحریک

هر موتور یا مولدی که از یک سیم‌پیچ به جای آهنربای دائم استفاده کند نیازمند جریانی است تا در سیم‌پیچ‌ها جریان داشته باشد و ماشین را قادر به کار کند. در صورتیکه جریانی در سیم‌پیچ تحریک مولد وجود نداشته باشد حرکت روتور نمی‌تواند موجب تولید انرژی الکتریکی شود. در نیروگاه‌های بزرگ از مولدهای کوچک برای تولید جریان تحریک مولدها استفاده می‌شود.

مدار معادل

 

مدار معدل یک مولد و بار خارجی

مدار معادل یک مولد به همراه بار خارجی RL در تصویر سمت چپ نمایش داده شده. برای به دست آوردن پارامترهای VG (ولتاژ مولد) و RG (مقاومت الکتریکی مولد) باید به ترتیب زیر عمل کنید:

  • پیش از شروع به کار مولد با استفاده از یک اهم متر، مقاومت پایانه‌های مولد را اندازه‌گیری کنید. این مقامت مقاومت VDCGیا مقامت DC داخلی مولد نام  دارد.
  • پس از راه‌اندازی مولد و قبل از وصل بار RLبه مدار با استفاده از ولت متر میزان ولتاژ را در پایانه‌های مولد اندازه‌گیری کنید. این ولتاژ VG یا ولتاژ مدار باز  مولد نام دارد.
  • بار RLرا به صورتی که در شکل نشان داده شده به مولد متصل کنید و سپس ولتاژ را در پایانه‌های مولد اندازگیری کنید. این ولتاژ VL یا ولتاژ زیر بار مولد  نام دارد.
  • در صورتی که از میزان بار RLاطلاع ندارید میزان مقاومت بار را اندازه‌گیری کنید.
  • میزان مقاومت AC داخلی مولد با استفاده از فرمول زیر محاسبه می‌گردد:

{displaystyle R_{GAC}={R_{L}}left({{{V_{G}} over {V_{L}}}-1}right)}

به طور کلی مقاومت AC داخلی مولد در هنگام حرکت مولد کمی بیشتر از مقاومت داخلی DC آن در حالت توقف مولد است. رویه بالا این امکان را برای شما به وجود می‌آورد که دو پارامتر را با دقت بهتری به دست آورید اما می‌توانید برای محاسبه تقریبی دو پارامتر مقاومت AC و DC را برابر در نظر بگیرید.

  • نکته: در صورتی که مولد از نوع AC است از یک ولت متر AC برای اندازه‌گیری ولتاژ استفاده کنید.

بر طبق «قاعده توان بیشینه در مولد» توان بیشینه در مولد هنگامی ایجاد می‌شود که میزان مقاومت بار خارجی با میزان مقاومت داخلی مولد برابر باشد. اما در این صورت نیمی از توان تولیدی مولد در مقاومت داخلی آن به مصرف می‌رسد که این امر بهره‌وری مولد را به شدت کاهش می‌دهد و به همین دلیل در مولدها معمولاً میزان مصرف بار خارجی چندین برابر مصرف بار داخلی مولد است تا به این ترتیب بهره‌وری مولد بالاتر رود.


دانلود فایل

آموزش برق کشی ساختمان

آموزش برق کشی ساختمان

آموزش-برق-کشی-ساختمان

آموزش برق کشی ساختمان و قوانين نظارت عاليه برق
تعداد صفحات : 850 با فرمت ورد و قابل ویرایش
 
 

ترتیب انجام برقکشی ساختمان  

مرحله اول:
1 – کشیدن نقشه ساختمانی شامل سیستمهای روشنائی  سیستم های صوتی –  سوکتهای برق  تلفن – آنتن – آیفون  فن کوئیل ها  اطفاء حریق  برق اضطراری و موتور خانه.
2- اجرای نقشه روی کار.
3- تراز کردن کل قوطی کلیدها و کشیدن خطِ  تراز با چک لاین.
4- شیار زدن مسیر لوله ها با شابلون ودستگاه شیارزن .
5- کندن قوطی کلیدها با دستگاه .
6- سوراخ کردن روشنائی سقفی توسط دستگاه ( در مورد سقف کاذب، روی سقف ساپورت خورده و روی آن لوله فیکس میشود).
7- نصب قوطی کلید رو

مرحله اول 

1 – کشیدن نقشه ساختمانی شامل سیستمهای روشنائی  سیستم های صوتی – سوکتهای برق  تلفن  آنتن  آیفون  فن کوئیل ها – اطفاء حریق  برق اضطراری و موتور خانه.
2- اجرای نقشه روی کار.
3- تراز کردن کل قوطی کلیدها و کشیدن خطِ تراز با چک لاین.
4- شیار زدن مسیر لوله ها با شابلون و دستگاه شیارزن .

5- کندن جای قوطی کلید و پریزها با دستگاه.
6- سوراخ کردن روشنائی سقفی توسط دستگاه (در مورد سقف کاذب، روی سقف ساپورت خورده و روی آن لوله فیکس میشود).
7- نصب قوطی کلید روی دیوار توسط شابلون و تراز کردن دقیق آنها.
8- جوشکاری و ساپورت زدن برای فیکس کردن لوله پولیکاهای که برای ورودی و خروجی لوله های که داخل جعبه فیوز آورده می شود.
۹- جوشکاری و ساپورت زدن برای فیکس کردن لوله پولیکاهای که برای ورودی و خروجی لوله هایی که داخل جعبه آنتن و تلفن آورده می شود.
10- اجرای لوله پولیکا گذاری توسط گرما و خم کاری توسط مشعل و فنر و آب بندی آن توسط چسب پولیکا.
11- جوشکاری و ساخت ساپورت برای سینی برق بر روی داکت مشخص شده از روی نقشه ( این سینی برق ها برای ورود کابل های برق تلفن، آنتن، ماهواره و ……. نیازهای ساختمان به طور مجزا داخل داکت های ساختمان فیکس و وارد باکس های مورد نیاز خود می شود).
12- پوشش کامل روی لوله پولیکا های که در کف ساختمان کار شده است.
13- نصب جعبه فیوز و تراز کردن آن در جاهای مشخص توسط نقشه.
14- نصب جعبه آنتن و ماهواره و تلفن و تراز کردن آن در جاهای مشخص توسط نقشه.
15- تامین ارتینگ ساختمان( نصب پلیت و سیم مسی و زغال ونمک برای راه اندازی چاه ارت و از آنجا به سینی برق و به مصرف کننده ها)
16- لوله فولادی گذاری در شرایطی که نقشه تعیین کرده است (در پارکینگ های اداره جات، داخل روشنائی آسانسور و روشنائی موتور خانه).
مرحله دوم:(بعد از کف سازی و کاشی کاری و سفید کاری دیوار)
1- تمیز کردن قوطی کلیدها و بریدن لوله های اضافی روی کار.
2- سیم گذاری داخل لوله پولیکا (رنگ سیم ها و قطر سیم ها و جنس سیم ها از روی استاندارد انتخاب میشود)
3- انداختن کابل شیلد دار برای بلندگوها و از آنجا به ولوم های همان اتاق و از آنجا به فیشهای پشت آمپلی فایرها.
4-کابل کشی برق از داخل جعبه فیوز و رد کردن داخل سینی برق و بست زدن و از آنجا به زیر کنتور(درصورت داشتن دیزل ژنراتور این کابل ها داخل موتور خانه و وارد تابلو های مخصوص خودش میشود).
5- کابل کشی تلفن، آنتن ماهواره وآیفون ازتابلوهای مخصوص خودش و رد کردن داخل سینی مخصوص خودش و بست زدن کابل ها و از آنجا به باکس های مخصوص خودشان.

6- اتصالات سر سیم ها در داخل قوطی کلید، جعبه فیوزها، روشنائیها، توکارها، جعبه آنتن، ماهواره، تلفن، اطفاء حریق، UPS(نصب دستگاه های تغذیه UPS به شرکتهای مسئول مرتبط میشود)
7- قلع اندود کردن کل اتصالات و سر سیم ها توسط حوضچه قلع
8- عایق کاری اتصالات توسط وارنیش حرارتی (جایگزین لنت برق).
9- اجرای کابل کشی مربوط به بیرون ساختمان نصب نور افکن ها در نما احیانا برای تغذیه دوربینهای مدار بسته نمای بیرونی ساختمان
مرحله سوم: ( بعد از نقاشی و کف تمام شده)
1- بستن کلید و پریز و تراز کردن آنها
2- بستن ترمینال روی سر سیم ها. 
4- نصب دتکتور های دود و شستی آنها روی جاهای تعیین شده
5- نصب فیوزها داخل جعبه فیوز و وایرشو زدن سرسیم ها و فیوز بندی آنها

 

چند نمونه وایرشو(کابل شو)
6- نصب آیفون تصویری بستن سوکتها و شستی های مربوط به آن. 
7- نصب آنتن مرکزی و سوئچینگهای مربوط به آن

9- نصب چشم لایتینگ در راه پله و پارکینگ ها
10- نصب چشم لایتینگ در سرویسها برای هود مرکزی ( این چشم ها پس از عمل کردن به کنتاکتور و سپس کنتاکتور به سانتیفوژ فرمان داده و باعث تهویه سرویسها می شود)

11- نصب نور مخفی های داخل سقف کاذب و کفی های روی سرامیک.

نصب تجهزات برقی موتور خانه

1- نصب تابلوی برق موتورخانه (تجهیزات داخل تابلو برق بر اساس نیازهای موتور خانه انتخاب و توسط تابلو ساز ساخته میشود) 
2- نصب پایه سینی برق روی دیوار و فیکس کردن سینی برق روی آن.
3- نصب لوله زیرسینی برق و از آنجا روی الکتروموتورها و ترموستات ها و مصرف کننده های دیگر. 
4- کابل کشی از تابلو برق روی سینی برق و داخل لوله تا سرالکتروموتورها و ترموستات ها و مصرف کننده ها.
5- وایرشو زدن و شماره زدن سر سیم ها و بستن آن روی تخته کِلِم الکتروموتورها و ترموستات ها و مصرف کننده ها واز آنجا به ترمینال زیر تابلو برق.

منابع تغذیه اضطراری

برخی از سیستمهای حساس و مهم در منازل و اماکن عمومی یا در ادارات و کارخانه ها باید هنگام قطع برق شهر به طریقی از یک منبع تغذیه دیگر استفاده کنند و به کار خود ادامه دهند.  منابع تغذیه ای که وظیفه تامین برق را در هنگام قطع برق شبکه به عهده دارند منابع تغذیه اضطراری نامیده میشوند. منابع تغذیه اضطراری بسته به سیستم مورد تغذیه خصوصیات متفاوتی دارند برخی از منابع برق اضطراری که از باطری برای تولید انرژی الکتریکی استفاده می کنند فقط قادرند برای مدت محدودی بسته به مقدار مصرف سیستم مورد تغذیه برق آن تامین نمایند ولی برخی دیگر قادرند به مدت نامحدودی تا زمان وصل شدن مجدد برق شهر برق اضطراری را تامین کنند. اینگونه سیستمها دارای موتور مکانیکی و ژنراتور میباشند و تا زمانی که سوخت موتور مکانیکی تامین شود میتوانند در محدوده قدرت نامی ژنراتور برق اضطراری را تامین نمایند. خصوصیت دیگری که منابع تغذیه اضطراری را از یکدیگر متمایز میکند مدت زمانی است که طول میکشد تا بعد از قطع برق شبکه برق اضطراری وصل شود. برخی از این سیستمها قادرند بدون تاخیر بعد از قطع برق شهر در عرض چند میلی ثانیه برق اضطراری را وصل نمایند. اینگونه منابع تغذیه اضطراری که معمولا انرژی خود را از باطری تامین میکنند در مکانهایی مانند اتاق عمل، اتاق کامپیوتر، سیستمهای نظامی و غیره مورد استفاده قرار میگیرند. در مقابل سیستمهایی که از موتور مکانیکی و مولد برای تولید برق اضطراری استفاده میکنند بدلیل اینکه موتور مکانیکی برای راه اندازی نیازمند زمان است دارای تاخیر در وصل برق اضطراری خواهند بود.
لذا با توجه به خصوصیات و نیاز محل مورد استفاده، یکی از این سیستمها یا ترکیبی از هر دو نوع ممکن است استفاده گردد.


دانلود فایل

دانلود پاورپوینت انرژی خورشیدی

دانلود پاورپوینت انرژی خورشیدی

دانلود-پاورپوینت-انرژی-خورشیدی

پاورپوینت انرژی خورشیدی
تعداد اسلاید : 70
 
قسمتی از متن اسلاید ها : 

خورشید سرچشمه ی عظیم و بیکران انرژی است،که حیات زمین به آن بستگی دارد و همه ی انواع دیگر انرژی نیز به گونه ای از آن نشات گرفته اند.اگر تمام سوختهای فسیلی موجود در جهان را جمع کنیم و بسوزانیم ،این انرژی معادل تابش خورشید به زمین تنها برای 4 روز خواهد بود.و حرارت و نوری که در هر ثانیه از خورشید به زمین می رسد،میلیون ها ملیون برابر قدرت بمب اتمی منفجر شده در هیروشیما با ناکازاکی است.

هر چند استفاده از انرژی خورشیدی هنوز آن قدر که باید توسعه نیافته است، اما انرژی مورد نیاز حدود 160 هزار روستا در جهان بر پایه ی انرژی خورشیدی است.

همان گونه که می‌دانید کشور اندونزی از چندین هزار جزیره‌ی کوچک و بزرگ تشکیل شده‌است، و به کارگیری نیروگاه و خطوط انتقال در آن کشور در عمل امکان پذیر نمی‌باشد. لذا در اکثر روستاهای اندونزی انرژی خورشیدی تنها راه حل است، و به این طریق حدود 20 میلیون نفر از مردم اندونزی لازم را از طریق خورشی کسب می‌کنند.

بنابراین با تحقیقاتی که در سراسر دنیا در حال انجام است، به زودی استفاده و بهره‌برداری از نیروگاهای بزرگ خورشیدی همه‌گیر خواهد شد.

امروزه شش شیوه‌ی تولید برق از نور خورشید شناخته شده است:

  1. آینه‌ی سهمی‌گون
  2. دریافت کننده‌ی مرکزی
  3. آینه‌های شلجمی (بشقابی یا یا استرلینک)
  4. دودکش خورشیدی
  5. استخر خورشیدی
  6. سلولهای نوری (فتوولتاییک)

اما امروزه بیشتر با به‌کارگیری سلول‌های خورشیدی یا راه‌اندازی نیروگاههای حرارتی، انرژی خورشید را مهار می‌کنند.

نیروگاههای خورشیدی با هزینه‌ای بسیار کم، بدون تولید گازهای مخرب و بدون اشتغال فضاهای مفید، بزودی جایگزینی کامل برای نیروگاههای سوخت فسیلی خواهند بود.

کشور ما، بر کمربند خورشیدی زمین قرار دارد و یک چهارم مساحت آن را کویرهایی با شدت تابش بیش از 5 کیلو وات ساعت به متر مربع، پوشانده است که اگر یک درصد این مساحت برای ساخت نیروگاه خورشیدی با بازده 10 درصد به کا برود، تقریبا” 63 ملیون مگا وات ساعت برق (یعنی حدود 4 برابر تولید فعلی برق در کشور )تولید خواهد شد.

مهم ترین فناوری های موجود در زمینه‌ی انرژی خورشیدی حرارتی، تمرکز انرژی خورشیدی و فتوولتاییک است. سلول‌های فتوولتاییک از آفتاب سوخت می‌گیرند نه از حرارت. این سلول‌ها که غالبا” از سیلیکن نیمه‌هادی ساخته شده‌اند، نور آفتاب را مستقیما” به برق تبدیل می‌کنند.ساده‌ترین سلول‌های فتوولتاییک نیروی مورد نیاز ساعتهای مچی و ماشین حساب‌ها را تامین می‌کنند.

در فرآیند فتوولتاییک، ذرات نور که فوتون نام داشته، به داخل سلول‌ها نفوذ کرده و با آزاد کردن الکترون از اتم‌های سیلیکن جریان الکتریکی تولید می‌کنند.تا زمانی که تابش نور خورشید به داخل سلول ادامه یابد  الکتریسیته تولید می‌شود. این سلول‌ها الکترون‌های خود را مانند باتری‌ها تمام نمی‌کنند، آنها مبدل‌هایی بوده که یک نوع انرژی (خورشیدی) را به نوعی دیگر (جریان الکترونها)تبدیل می‌کند.

 

خورشید از گازهایی نظیر هیدروژن (۷۳٫۴۶درصد) هلیوم (۲۴٫۸۵ درصد) و عناصر دیگری تشکیل شده است که از جمله آن‌ها می‌توان به اکسیژن، کربن،نئون و نیتروژن اشاره نمود.

انرژی ستاره خورشید یکی از منابع عمدهٔ انرژی در منظومه شمسی می‌باشد. طبق آخرین برآوردهای رسمی اعلام شده عمر این منبع انرژی بیش از ۱۴ میلیارد سال می‌باشد. در هر ثانیه ۲/۴ میلیون تن از جرم خورشید به انرژی تبدیل می‌شود. با توجه به جرم خورشید که حدود ۳۳۳ هزار برابر جرم زمین است. این کره نورانی را می‌توان به‌عنوان منبع عظیم انرژی تا ۵ میلیارد سال آینده به حساب آورد.

میزان دما در مرکز خورشید حدود ۱۰ تا ۱۴ میلیون درجه سانتیگراد می‌باشد که از سطح آن با حرارتی نزدیک به ۵۶۰۰ درجه و به صورت امواج الکترو مغناطیسی در فضا منتشر می‌شود.

زمین در فاصله ۱۵۰ میلیون کیلومتری خورشید واقع است و ۸ دقیقه و ۱۸ ثانیه طول می‌کشد تا نور خورشید به زمین برسد؛ بنابراین سهم زمین در دریافت انرژی از خورشید میزان کمی از کل انرژی تابشی آن می‌باشد. سرمنشاء تمام اشکال مختلف انرژیهای شناخته شده تاکنون شامل (سوختهای فسیلی ذخیره شده درزمین، انرژی‌های بادی، آبشارها، امواج دریاها و…) موجود در کره زمین از خورشید می‌باشد.

انرژی خورشید همانند سایر انرژی‌ها بطور مستقیم یا غیر مستقیم می‌تواند به دیگر اشکال انرژی تبدیل شود، همانند گرما و الکتریسیته و… ولیکن موانعی شامل (ضعف علمی و تکنیکی در تبدیل بعلت کمبود دانش و تجربه میدانی – متغیر و متناوب بودن مقدار انرژی به دلیل تغییرات جوی و فصول سال و جهت تابش – محدوده توزیع بسیار وسیع) موجب گردیده تا استفاده کمی از این انرژی صورت گیرد.

استفاده ازمنابع عظیم انرژی خورشید برای تولید انرژی الکتریسته، استفاده دینامیکی، ایجاد گرمایش محوطه‌ها و ساختمانها، خشک کردن تولیدات کشاورزی و تغییرات شیمیایی و… اخیراً شروع گردیده‌است.

انرژی خورشیدی[ویرایش]

انرژی خورشیدی منحصربه‌فردترین منبع انرژی تجدیدپذیر در جهان است و منبع اصلی تمامی انرژی‌های موجود در زمین می‌باشد. انرژی خورشیدی به صورت مستقیم و غیرمستقیم می‌تواند به اشکال دیگر انرژی تبدیل گردد. به‌طور کلی انرژی متصاعد شده از خورشیدی در حدود ۳٫۸ در ۱۰۲۳ کیلووات در ثانیه می‌باشد.

ایران با داشتن حدود ۳۰۰ روز آفتابی در سال جزو بهترین کشورهای دنیا در زمینه پتانسیل انرژی خورشیدی در جهان می‌باشد. با توجه به موقعیت جغرافیای ایران و پراکندگی روستای در کشور، استفاده از انرژی خورشیدی یکی از مهمترین عواملی است که باید مورد توجه قرار گیرد. استفاده از انرژی خورشیدی یکی از بهترین راه‌های برق رسانی و تولید انرژی در مقایسه با دیگر مدل‌های انتقال انرژی به روستاها و نقاط دور افتاده در کشور از نظر هزینه، حمل‌نقل، نگهداری و عوامل مشابه می‌باشد.

با توجه به استانداردهای بین‌المللی اگر میانگین انرژی تابشی خورشید در روز بالاتر از ۳٫۵ کیلووات ساعت در مترمربع (۳۵۰۰ وات/ساعت) باشد استفاده از مدلهای انرژی خورشیدی نظیر کلکتورهای خورشیدی یا سیستم‌های فتوولتائیک بسیار اقتصادی و مقرون به صرفه است.

در بسیاری از قسمتهای ایران انرژی تابشی خورشید بسیار بالاتر از این میانگین بین‌المللی می‌باشد و در برخی از نقاط حتی بالاتر از ۷ تا ۸ کیلو وات ساعت بر مترمربع اندازه‌گیری شده است ولی بطور متوسط انرژی تابشی خورشید بر سطح سرزمین ایران حدود ۴٫۵ کیلو وات ساعت بر مترمربع است.[۱]

تاریخچه[ویرایش]

شناخت انرژی خورشیدی و استفاده از آن برای منظورهای مختلف به زمان ماقبل تاریخ باز می‌گردد. شاید به دوران سفالگری، در آن هنگام روحانیون معابد به کمک جام‌های بزرگ طلائی صیقل داده شده و اشعه خورشید، آتشدان‌های محرابها را روشن می‌کردند. یکی از فراعنه مصر معبدی ساخته بود که با طلوع خورشید درب آن باز و با غروب خورشید درب بسته می‌شد.

ولی مهم‌ترین روایتی که دربارهٔ استفاده از خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان قدیم می‌باشد که ناوگان روم را با استفاده از انرژی حرارتی خورشید به آتش کشید گفته می‌شود که ارشمیدس با نصب تعداد زیادی آئینه‌های کوچک مربعی شکل در کنار یکدیگر که روی یک پایه متحرک قرار داشته‌است اشعه خورشید را از راه دور روی کشتی‌های رومیان متمرکز ساخته و به این ترتیب آنها را به آتش کشیده‌است. در ایران نیز معماری سنتی ایرانیان باستان نشان دهنده توجه خاص آنان در استفاده صحیح و مؤثر از انرژی خورشید در زمان‌های قدیم بوده‌است.


دانلود فایل